Class IX Chapter 11 - Constructions Maths

Exercise 11.1 Question

1 :

Construct an angle of 90° at the initial point of a given ray and justify the construction.

Answer:
The below given steps will be followed to construct an angle of 90°.
(i) Take the given ray PQ. Draw an arc of some radius taking point P as its centre, which intersects PQ at R.
(ii) Taking R as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at S.
(iii)Taking S as centre and with the same radius as before, draw an arc intersecting the arc at T (see figure).
(iv)Taking S and T as centre, draw an arc of same radius to intersect each other at U .
(v) Join PU, which is the required ray making 90° with the given ray PQ.

Justification of Construction:
We can justify the construction, if we can prove $\angle \mathrm{UPQ}=90^{\circ}$.
For this, join PS and PT.

We have, $\angle \mathrm{SPQ}=\angle \mathrm{TPS}=60^{\circ}$. In (iii) and (iv) steps of this construction, PU was drawn as the bisector of \angle TPS.
$\therefore \angle \mathrm{UPS}=\begin{aligned} & \frac{1}{2} \quad=\frac{1}{2} \times 60^{\circ}=30^{\circ} \\ & \angle \mathrm{TPS}\end{aligned}$
Also, $\angle \mathrm{UPQ}=\angle \mathrm{SPQ}+\angle \mathrm{UPS}$
$=60^{\circ}+30^{\circ}$
$=90^{\circ}$
Question 2:
Construct an angle of 45° at the initial point of a given ray and justify the construction.

Answer:
The below given steps will be followed to construct an angle of 45°.
(i) Take the given ray PQ. Draw an arc of some radius taking point P as its centre, which intersects $P Q$ at R.
(ii) Taking R as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at S.
(iii) Taking S as centre and with the same radius as before, draw an arc intersecting the arc at T (see figure).
(iv)Taking S and T as centre, draw an arc of same radius to intersect each other at U.
(v) Join PU. Let it intersect the arc at point V.
(vi) From R and V, draw arcs with radius more than $\sqrt{\frac{1}{2}} \mathrm{RV}$ to intersect each other at W . Join PW.

PW is the required ray making 45° with PQ .

Justification of Construction:
We can justify the construction, if we can prove $\angle W P Q=45^{\circ}$.
For this, join PS and PT.

We have, $\angle \mathrm{SPQ}=\angle \mathrm{TPS}=60^{\circ}$. In (iii) and (iv) steps of this construction, PU was drawn as the bisector of \angle TPS.
$\therefore \angle$ UPS $=\frac{\frac{1}{2}}{2}=\frac{60^{\circ}}{2}=30^{\circ} . \operatorname{TPS}$

Also, $\angle \mathrm{UPQ}=\angle \mathrm{SPQ}+\angle \mathrm{UPS}$
$=60^{\circ}+30^{\circ}$
$=90^{\circ}$
In step (vi) of this construction, PW was constructed as the bisector of $\angle \mathrm{UPQ}$.
$\therefore \angle \mathrm{WPQ}={ }^{\frac{1}{2}} \angle \mathrm{UPQ}=\frac{90^{\circ}}{2}=45^{\circ}$

Question 3:

Construct the angles of the following measurements:
(i) 30° (ii) $22 \frac{1}{2}^{\circ}$ (iii) 15° Answer:
(i) 30°

The below given steps will be followed to construct an angle of 30°.
Step I: Draw the given ray $P Q$. Taking P as centre and with some radius, draw an arc of a circle which intersects PQ at R.

Step II: Taking R as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at point S.
Step III: Taking R and S as centre and with radius more than $\frac{1}{2}$ RS, draw arcs to intersect each other at T. Join PT which is the required ray making 30° with the
qiven ray $P Q$.

$$
22 \frac{1}{2}^{\circ}
$$

(ii)

The below given steps will be followed to construct an angle of $22 \frac{1}{2}$.
(1) Take the given ray PQ. Draw an arc of some radius, taking point P as its centre, which intersects PQ at R.
(2) Taking R as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at S.
(3) Taking S as centre and with the same radius as before, draw an arc intersecting the arc at T (see figure).
(4) Taking S and T as centre, draw an arc of same radius to intersect each other at U.
(5) Join PU. Let it intersect the arc at point V.
(6) From R and V, draw arcs with radius more than $\sqrt{\frac{1}{2}}$ RV to intersect each other at W. Join PW.
(7) Let it intersect the arc at X. Taking X and R as centre and radius more than $\frac{1}{2}$ of a circle which intersects PQ at R.

RX, draw arcs to intersect each other at Y .

$$
22 \frac{1}{2}^{\circ}
$$

Joint PY which is the reauired rav making with the given ray PQ.
(iii) 15°

The below given steps will be followed to construct an angle of 15°.
Step I: Draw the given ray PQ. Taking P as centre and with some radius, draw an arc Step II: Taking R as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at point S.

Step III: Taking R and S as centre and with radius more than $\frac{1}{2}$ RS, draw arcs to intersect each other at T. Join PT.
Step IV: Let it intersect the arc at U. Taking U and R as centre and with radius more $\frac{1}{2}$ than
rav makina 15° with the given ray $P Q$.

Question 4:
other at V.
RU, draw an arc to intersect each Join PV which is the required

Construct the following angles and verify by measuring them by a protractor:
(i) 75° (ii) 105° (iii) 135° Answer:
(i) 75°

The below given steps will be followed to construct an angle of 75°.
(1) Take the given ray PQ. Draw an arc of some radius taking point P as its centre, which intersects PQ at R.
(2) Taking R as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at S.
(3) Taking S as centre and with the same radius as before, draw an arc intersecting the arc at T (see figure).
(4) Taking S and T as centre, draw an arc of same radius to intersect each other at U . (5) Join PU. Let it intersect the arc at V. Taking S and V as centre, draw arcs with
radius more than $\sqrt{\frac{1}{2}} \mathrm{SV}$. Let those intersect each other at W . Join PW which is the required ray making 75° with the given ray PQ .

The angle so formed can be measured with the help of a protractor. It comes to be 750 .
(ii) 105°

The below given steps will be followed to construct an angle of 105°.
(1) Take the given ray PQ. Draw an arc of some radius taking point P as its centre, which intersects PQ at R.
(2) Taking R as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at S.
(3) Taking S as centre and with the same radius as before, draw an arc intersecting the arc at T (see figure).
(4) Taking S and T as centre, draw an arc of same radius to intersect each other at U . (5) Join PU. Let it intersect the arc at V . Taking T and V as centre, draw arcs with
radius more than $\frac{1}{2}$ TV. Let these arcs intersect each other at W. Join PW which is the required ray making 105° with the given ray PQ.

The angle so formed can be measured with the help of a protractor. It comes to be 1050 .
(iii) 135°

The below given steps will be followed to construct an angle of 135°.
(1) Take the given ray PQ. Extend PQ on the opposite side of Q. Draw a semi-circle of some radius taking point P as its centre, which intersects $P Q$ at R and W.
(2) Taking R as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at S.
(3) Taking S as centre and with the same radius as before, draw an arc intersecting the arc at T (see figure).
(4) Taking S and T as centre, draw an arc of same radius to intersect each other at U . (5) Join PU. Let it intersect the arc at V. Taking V and W as centre and with radius
more than $\frac{1}{2}$ VW, draw arcs to intersect each other at X . Join PX , which is the required ray making 135° with the given line PQ.

The angle so formed can be measured with the help of a protractor. It comes to be 1350 .

Question 5:

Construct an equilateral triangle, given its side and justify the construction Answer:

Let us draw an equilateral triangle of side 5 cm . We know that all sides of an equilateral triangle are equal. Therefore, all sides of the equilateral triangle will be 5 cm . We also know that each angle of an equilateral triangle is 60°.

The below given steps will be followed to draw an equilateral triangle of 5 cm side. Step I: Draw a line segment $A B$ of 5 cm length. Draw an arc of some radius, while taking A as its centre. Let it intersect $A B$ at P.

Step II: Taking P as centre, draw an arc to intersect the previous arc at E . Join AE . Step III: Taking A as centre, draw an arc of 5 cm radius, which intersects extended line segment $A E$ at C. Join $A C$ and $B C . \triangle A B C$ is the required equilateral triangle of side 5 cm .

Justification of Construction:

We can justify the construction by showing $A B C$ as an equilateral triangle i.e., $A B=B C$ $=A C=5 \mathrm{~cm}$ and $A=B \angle C=\angle 60^{\circ}$.

In $\triangle A B C$, we have $A C=A B=5 \mathrm{~cm}$ and $\angle A=60^{\circ}$.
Since $A C=A B$,
$\angle B=C$ (Angles opposite to equal sides of a triangle)
In $\triangle A B C$,

```
\(\angle A+B+C \leqslant 180^{\circ}\) (Angle sum property of a triangle)
\(\angle 60^{\circ}+C+C \leqslant 180^{\circ}\)
\({ }^{\angle} 60^{\circ}+2 \hat{C}=180^{\circ}\)
\(\angle 2 \stackrel{\angle}{C}=180^{\circ}-60^{\circ}=120^{\circ}\)
\(\ll\)
    \(\mathrm{C}=60^{\circ}\)
\(\angle \angle \quad \angle\)
    \(\mathrm{B}=\mathrm{C}=\underset{\angle}{6} 0^{\circ} \angle \quad \angle\)
We have, \(\underset{L}{A}=B=C=60^{\circ} \ldots\) (1)
\(\angle A=B\) and \(A=C\)
\(\angle B C=A C\) and \(B C=A B\) (Sides opposite to equal angles of a triangle)
    \(A B=B C=A C=5 \mathrm{~cm} \ldots\)

From equations (1) and (2), \(\triangle \mathrm{ABC}\) is an equilateral triangle.

Construct a triangle \(A B C\) in which \(B C=7 \mathrm{~cm}, \angle B=75^{\circ}\) and \(A B+A C=13 \mathrm{~cm}\).
Answer:
The below given steps will be followed to construct the required triangle.
Step I: Draw a line segment \(B C\) of 7 cm . At point \(B\), draw an angle of \(75^{\circ}\), say \(\angle X B C\).

Step II: Cut a line segment \(B D=13 \mathrm{~cm}\) (that is equal to \(A B+A C\) ) from the ray \(B X\).
Step III: Join DC and make an angle DCY equal to \(\angle B D C\).

Step IV: Let CY intersect \(B X\) at \(A . \triangle A B C\) is the required triangle.


Question 2:
Construct a triangle \(A B C\) in which \(B C=8 \mathrm{~cm}, \angle B=45^{\circ}\) and \(A B-A C=3.5 \mathrm{~cm}\).
Answer:
The below given steps will be followed to draw the required triangle.
Step I: Draw the line segment \(B C=8 \mathrm{~cm}\) and at point \(B\), make an angle of \(45^{\circ}\), say \(\angle X B C\).

Step II: Cut the line segment \(B D=3.5 \mathrm{~cm}\) (equal to \(A B-A C\) ) on ray \(B X\). Step III: Join \(D C\) and draw the perpendicular bisector \(P Q\) of \(D C\).

Step IV: Let it intersect \(B X\) at point \(A\). Join \(A C . \triangle A B C\) is the required triangle.


\section*{Question 3:}

Construct a triangle \(P Q R\) in which \(Q R=6 \mathrm{~cm}, \angle \mathrm{Q}=60^{\circ}\) and \(\mathrm{PR}-\mathrm{PQ}=2 \mathrm{~cm}\)
Answer:
The below given steps will be followed to construct the required triangle.
Step I: Draw line segment \(Q R\) of 6 cm . At point Q , draw an angle of \(60^{\circ}\), say \(\angle \mathrm{XQR}\). Step II: Cut a line segment QS of 2 cm from the line segment QT extended in the opposite side of line segment \(X Q\). (As \(P R>P Q\) and \(P R-P Q=2 c m\) ). Join SR. Step III:
Draw perpendicular bisector \(A B\) of line segment \(S R\). Let it intersect \(Q X\) at point \(P\).
Join PQ, PR.
\(\triangle P Q R\) is the required triangle.


Construct a triangle \(X Y Z\) in which \(\angle Y=30^{\circ}, \angle Z=90^{\circ}\) and \(X Y+Y Z+Z X=11 \mathrm{~cm}\). Question 4:

Answer:
The below given steps will be followed to construct the required triangle.
Step I: Draw a line segment \(A B\) of 11 cm .
(As \(X Y+Y Z+Z X=11 \mathrm{~cm})\)
Step II: Construct an angle, \(\angle \mathrm{PAB}\), of \(30^{\circ}\) at point \(A\) and an angle, \(\angle \mathrm{QBA}\), of \(90^{\circ}\) at point \(B\).

Step III: Bisect \(\angle \mathrm{PAB}\) and \(\angle \mathrm{QBA}\). Let these bisectors intersect each other at point \(X\). Step IV: Draw perpendicular bisector ST of AX and UV of BX.

Step \(V\) : Let \(S T\) intersect \(A B\) at \(Y\) and \(U V\) intersect \(A B\) at \(Z\).
Join \(X Y, X Z\).
\(\triangle X Y Z\) is the required triangle.


\section*{Question 5:}

Construct a right triangle whose base is 12 cm and sum of its hypotenuse and other side is 18 cm .

Answer:
The below given steps will be followed to construct the required triangle.
Step I: Draw line segment \(A B\) of 12 cm . Draw a ray \(A X\) making \(90^{\circ}\) with \(A B\). Step II:
Cut a line segment \(A D\) of 18 cm (as the sum of the other two sides is 18 ) from ray \(A X\).

Step III: Join DB and make an angle DBY equal to ADB.
Step IV: Let BY intersect AX at C. Join AC, BC.
\(\triangle A B C\) is the required triangle.
```

